Researchers in Japan have tested a prototype 256-slice CT scanner in human patients, according to a study in the July issue of the American Journal of Roentgenology. The technology enabled dynamic imaging of liver cancer in real-time.
Researchers in Japan have tested a prototype 256-slice CT scanner in human patients, according to a study in the July issue of the American Journal of Roentgenology. The technology enabled dynamic imaging of liver cancer in real-time.
Imagers have been able to perform contrast-enhanced 3D imaging of the liver's arterial phase using 16-slice CT scanners, albeit with limitations. Current MSCT detector technology would not be able to obtain more than one image per second of a descending contrast agent bolus.
Dr. Shinichiro Mori and colleagues from research institutions in Chiba and Osaka used an experimental MSCT scanner in three randomly selected patients with hepatocellular carcinomas. They were able to detect all lesions using dynamic contrast enhancement in an almost simultaneous volumetric imaging cine mode.
Dynamic 256-slice CT obtained continuous 3D coronal renderings 30 seconds after contrast injection. The hepatic veins, abdominal aorta, and renal arteries were best visualized at 30, 34, and 36 seconds after injection, respectively. The technique also allowed observation of the backflow of contrast material to the inferior vena cava in one patient experiencing heart failure.
Investigators applied an imaging protocol including the following parameters:
The 256-slice scanner allowed superior cine imaging reconstructions of structures with a craniocaudal distance of approximately 10 cm in any plane with several postprocessing techniques including full-volume renderings and maximum intensity projections.
The system can cover one or more organs during one phase of contrast enhancement. It could also produce functional studies of the head, liver, and renal and coronary arteries, investigators noted in the study.
For more information from the Diagnostic Imaging archives:
64-slice scanners build case for coronary CTA
Single-phase, multislice CT aids pancreatic cancer detection
Jog-shuttle wheel turns heads and wrists
Why stop at 16? CT imagers predict 256-row scanners
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.
The Reading Room: Racial and Ethnic Minorities, Cancer Screenings, and COVID-19
November 3rd 2020In this podcast episode, Dr. Shalom Kalnicki, from Montefiore and Albert Einstein College of Medicine, discusses the disparities minority patients face with cancer screenings and what can be done to increase access during the pandemic.
Study Shows Merits of CTA-Derived Quantitative Flow Ratio in Predicting MACE
December 11th 2024For patients with suspected or known coronary artery disease (CAD) without percutaneous coronary intervention (PCI), researchers found that those with a normal CTA-derived quantitative flow ratio (CT-QFR) had a 22 percent higher MACE-free survival rate.