X-ray phase contrast imaging provides better soft tissue differentiation and tumor detection.
In a study published in IEEE Transactions on Biomedical Engineering on July 22, investigators from the Shenzhen Institutes of Advanced Technology at the Chinese Academy of Sciences revealed their deep convolutional neural network (CNN) that could improve cancer detection at a lower dose.
Although mammography is the conventionally preferred method for breast cancer screening, its limited image contrast mechanism can reduce the number of cancers it can identify. The technique called X-ray phase contrast imaging (XPCI) does offer better soft tissue differentiation and tumor detection, but the gold and silicon gratings used in it can reduce dose efficiency, meaning patients are exposed to more radiation.
To side-step this problem, a team led by Yongshuai Ge developed a CNN named XP-NET that was used to create a new XPCI signal extraction technique that could augment signal accuracy, leading to improved X-ray dose efficiency.
“We demonstrate that the deep convolutional neural network technique provides a promising approach to improve the grating-based XPCI performance and its dose efficiency in future biomedical applications,” Ge’s team wrote.
XP-NET’s special architecture design automatically performs XPCI signal retrieval and image quality enhancement in a sequence. By doing so, the CNN improved the phase signal accuracy by more than 15 percent compared to a conventional analytical method.
The team tested the CNN with both biological specimens and breast phantom studies, and they found that it was able to acquire phase images with half the dose, and the image quality was comparable to that acquired with the standard dose level.
These findings, the team said, point to the future potential low-dose pre-clinical uses of high quality breast X-ray phase contrast imaging.
Considering Breast- and Lesion-Level Assessments with Mammography AI: What New Research Reveals
June 27th 2025While there was a decline of AUC for mammography AI software from breast-level assessments to lesion-level evaluation, the authors of a new study, involving 1,200 women, found that AI offered over a seven percent higher AUC for lesion-level interpretation in comparison to unassisted expert readers.
Contrast-Enhanced Mammography and High-Concentration ICM Dosing: What a New Study Reveals
June 16th 2025New research showed a 96 to 97 percent sensitivity for contrast-enhanced mammography (CEM) with an increased iodine delivery rate facilitating robust contrast enhancement for women with aggressive breast cancer.
How to Successfully Launch a CCTA Program at Your Hospital or Practice
June 11th 2025Emphasizing increasing recognition of the capability of coronary computed tomography angiography (CCTA) for the evaluation of acute and stable chest pain, this author defuses common misperceptions and reviews key considerations for implementation of a CCTA program.