With big data comes big responsibility, but radiologists can benefit from the continuing big data trend.
The buzzword, “big data,” is becoming more and more prominent in the medical industry, but we all have a different understanding of what this term means. The definition is different depending on what sector of medicine you are referencing, so let’s back up for a moment. Where did this, now common, phrase originate and what does it mean to radiologists?
“Big data” was established in 1967 by NASA researchers to describe the enormous amount of information generated from supercomputers. More recently, the term has evolved to mean a collection of data sets so large and complex; it is difficult to process using available database management tools or traditional data processing applications.
Big data is undoubtedly a big deal. We now stream data from everything: laptops, phones, buses, trains, televisions and credit cards. The list is endless. Today, we have access to more data than ever before. What’s more impressive though, are the capabilities we now have with this information. This is why big data is so revolutionary.
What is leading this technological revolution? Algorithms. With these well-constructed equations, linking data sets and drawing conclusions from them is simplified.
With access to big data in healthcare, we can utilize algorithms to better associate and link genetic factors with potential illnesses. With genetic counseling and coding, this is already a part of our healthcare system. The use of algorithms and access to big data, are the driving forces behind many of these discoveries.
In the case of medical imaging and radiology, we may one day discover links between specific human anatomy and health indicators. As a result, big data could very well be the future of early diagnosis.
[[{"type":"media","view_mode":"media_crop","fid":"25655","attributes":{"alt":"Carolyn Fishman","class":"media-image media-image-right","id":"media_crop_2123441719450","media_crop_h":"0","media_crop_image_style":"-1","media_crop_instance":"2383","media_crop_rotate":"0","media_crop_scale_h":"0","media_crop_scale_w":"0","media_crop_w":"0","media_crop_x":"0","media_crop_y":"0","style":"margin: 1px; border-style: solid; height: 150px; width: 150px; float: right;","title":" ","typeof":"foaf:Image"}}]]
Additionally, radiologists will have more access to data than ever before, making the ability to draw patterns and connections between different sets of images possible. The more access to historical data you have, the better you can predict future anatomical changes in a patient.
Big data will also be the driving force behind personalized medicine. With access to past imaging exams, caregivers can look at other cases in order to determine the best route of care in an ill patient. The one-size-fits-all model will no longer suffice in medicine. Instead, doctors can target a disease more directly based on patients who have been cured in the past. Ultimately, in this use-case, big data can save lives.
The possibilities of big data in medicine are endless. Remember though, there is immense responsibility that comes along with big data. While access to this information can advance medicine, we also need to ensure HIPAA standards are followed and private patient health information is secured. Granting people access to big data while simultaneously ensuring patient privacy will undoubtedly be a delicate balance, but it is one we need to address to ensure medicine reaches its full potential.
Study Reaffirms Low Risk for csPCa with Biopsy Omission After Negative Prostate MRI
December 19th 2024In a new study involving nearly 600 biopsy-naïve men, researchers found that only 4 percent of those with negative prostate MRI had clinically significant prostate cancer after three years of active monitoring.
Study Examines Impact of Deep Learning on Fast MRI Protocols for Knee Pain
December 17th 2024Ten-minute and five-minute knee MRI exams with compressed sequences facilitated by deep learning offered nearly equivalent sensitivity and specificity as an 18-minute conventional MRI knee exam, according to research presented recently at the RSNA conference.
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.