• AI
  • Molecular Imaging
  • CT
  • X-Ray
  • Ultrasound
  • MRI
  • Facility Management
  • Mammography

Volume brain MR helps evaluate preemie therapy

Article

Volumetric MR images show that neonatal therapies designed to help premature babies survive and thrive could help offset brain injuries associated with premature birth.

Volumetric MR images show that neonatal therapies designed to help premature babies survive and thrive could help offset brain injuries associated with premature birth.

Results from research performed at Royal Children's Hospital in Melbourne, Australia, emphasize that parental nuturing can reduce postpartum white matter injury and lower the babies' susceptibility to cognitive and motor diseases such as cerebral palsy. The study also suggests that radiologists will play a role in predicting the outcomes of these cases, according to principal investigator Dr. Terrie Inder, an associate professor of pediatric medicine.

The results show that the stress of spending the first days of life in a neonatal intensive care unit affects babies' frontal brain regions, especially the extent and reversibility of white matter damage. Tender loving care in the form of more cuddling and other positive interactions with parents soon after birth improves the baby's behavior and brain structure, Inder said.

Better treatment strategies for sepsis and blood pressure control, which appear to be the main direct causes of white matter injury, should be addressed, she said.

Volumetric MRI mapped the neuroanatomic characteristics of 202 preterm infants with a mean gestational age of 28 weeks, as well as 36 full-term babies. Overall, the preterm infants had an average of 25 cc less total cerebral tissue than did the fullterm babies, according to Deanne K. Thompson, a research associate, who presented the results at the International Society for Magnetic Resonance in Medicine meeting in May. The premature babies had significantly reduced basal ganglia or subcortical gray matter and less cerebrospinal fluid.

Perinatal factors contributing to reduced total brain tissue volume in preterm infants included the number of days on total parenteral nutrition and intrauterine growth re-striction (IUGR). Increases in CSF volumes were related to gestational age and the amount of white matter injury.

The presence and severity of cerebral white matter injury were a major predictor of preterm tissue volume, Thompson said. Moderate to severe white matter injury resulted in a significant reduction in cortical gray matter in preterm infants compared with no or mild white matter injury.

The sensorimotor region displayed the largest changes in cortical gray matter. Gestational age, hours on positive pressure ventilation, and IUGR predicted how much cortical gray matter would be measured in this region.

The dorsal prefrontal region displayed changes in cortical gray matter, with IUGR as a contributor, but the unmyelinated white matter showed no clear perinatal correlates. The parieto-occipital area revealed substantial differences between pre-term and full-term infants for cortical gray matter, but again with no clear perinatal correlates. In contrast, the premotor area was reduced in unmyelinated white matter. Male gender was a significant contributor.

The Melbourne group plans to release additional data indicating that quantitative MRI can be used to predict the outcome of extremely premature neonatal patients.

"Depending on what a radiologist says about what the brain looks like at term, the pediatrician will have the capability to predict the baby's developmental outcomes at two years of age," Inder said.

Recent Videos
Radiology Study Finds Increasing Rates of Non-Physician Practitioner Image Interpretation in Office Settings
Addressing the Early Impact of National Breast Density Notification for Mammography Reports
Where the USPSTF Breast Cancer Screening Recommendations Fall Short: An Interview with Stacy Smith-Foley, MD
A Closer Look at MRI-Guided Transurethral Ultrasound Ablation for Intermediate Risk Prostate Cancer
Improving the Quality of Breast MRI Acquisition and Processing
Can Diffusion Microstructural Imaging Provide Insights into Long Covid Beyond Conventional MRI?
Emerging MRI and PET Research Reveals Link Between Visceral Abdominal Fat and Early Signs of Alzheimer’s Disease
Nina Kottler, MD, MS
Practical Insights on CT and MRI Neuroimaging and Reporting for Stroke Patients
Related Content
© 2024 MJH Life Sciences

All rights reserved.