In a video interview, Hong Song, M.D., Ph.D., discussed retrospective research, presented at the recent Society for Nuclear Medicine and Molecular Imaging (SNMMI) conference, that evaluated the combination of artificial intelligence (AI)-based software and the PSMA agent piflufolastat F 18 to help quantify prostate cancer lesions and associations with biochemical progression-free survival.
Manual assessments of prostate specific membrane antigen (PSMA) scoring and measures such as standardized uptake value (SUV) mean and maximum SUV (SUVmax) on positron emission tomography (PET) scans can be tedious and are not always accurate, noted Hong Song, M.D., Ph.D., in a recent interview.
With this in mind, Dr. Song and colleagues recently evaluated the combination of aPROMISE software (PYLARIFY AI, Exini Diagnostics AB/Lantheus Holdings), an FDA-cleared deep learning platform for quantitative assessment of PSMA PET/CT images, and piflufostat F 18 (PYLARIFY®, Lantheus Holdings) to assess 69 patients with prostate cancer recurrence and the impact of quantitative measures upon subsequent biochemical progression-free survival.
In some of the findings from the study, presented at the recent Society for Nuclear Medicine and Molecular Imaging (SNMMI) conference, the researchers noted that higher PSMA-avid total tumor volume (PSMAAttv) and a higher aPSMA score for bone metastases were both associated with shorter biochemical progression-free survival in patients with prostate cancer.
(Editor’s note: For related content, see “Recurrent Prostate Cancer and Low PSA Levels: Can an Emerging PSMA PET Agent Have an Impact?,” “Emerging PET Radiotracer May Offer Multiple Advantages in Detecting Prostate Cancer” and “Can Pre-Op MRI Staging Help Predict Prostate Cancer Recurrence After a Prostatectomy?”)
“There are quantitative tools now that are readily available to help us have this prognostic evaluation of (patients) who may be at high risk for subsequent progression (of prostate cancer and) should be followed more closely. … There is more information than meets the eye in the scan that we can now quantify and extract,” emphasized Dr. Song, an assistant professor of radiology (nuclear medicine) at Stanford University.
For more insights from Dr. Song, watch the video below.
Study Examines Prognostic Value of 68Ga-PSMA-11 PET/CT for Patients at High Risk of PCa
June 21st 2024Initial detection of metastatic prostate cancer via 68Ga-PSMA-11 PET/CT was significantly associated with PSA values > 20 ng/ml, ISUP grade > 3 and MRI T-stage > 3, according to research presented recently at the SNMMI conference.
SNMMI: Can Ultra-Low Dose PET Supplant the Need for CT Attenuation Correction?
June 11th 2024Ultra-low dosing with long axial field-of-view positron emission tomography (PET) scanners facilitates qualitative PET imaging at a more than 50 percent reduction of conventional radiation dosing with PET, according to new research presented at the SNMMI 2024 conference.
SNMMI: AI May Enhance Detection and Risk Assessment for Multiple Cancers on Whole-Body PET/CT Scans
June 10th 2024Deep transfer learning may elevate the capability of whole-body PET/CT scans to diagnose multiple cancers, ranging from breast cancer and lung cancer to melanoma and prostate cancer, according to new research presented at the SNMMI conference.