In a video interview, Hong Song, M.D., Ph.D., discussed retrospective research, presented at the recent Society for Nuclear Medicine and Molecular Imaging (SNMMI) conference, that evaluated the combination of artificial intelligence (AI)-based software and the PSMA agent piflufolastat F 18 to help quantify prostate cancer lesions and associations with biochemical progression-free survival.
Manual assessments of prostate specific membrane antigen (PSMA) scoring and measures such as standardized uptake value (SUV) mean and maximum SUV (SUVmax) on positron emission tomography (PET) scans can be tedious and are not always accurate, noted Hong Song, M.D., Ph.D., in a recent interview.
With this in mind, Dr. Song and colleagues recently evaluated the combination of aPROMISE software (PYLARIFY AI, Exini Diagnostics AB/Lantheus Holdings), an FDA-cleared deep learning platform for quantitative assessment of PSMA PET/CT images, and piflufostat F 18 (PYLARIFY®, Lantheus Holdings) to assess 69 patients with prostate cancer recurrence and the impact of quantitative measures upon subsequent biochemical progression-free survival.
In some of the findings from the study, presented at the recent Society for Nuclear Medicine and Molecular Imaging (SNMMI) conference, the researchers noted that higher PSMA-avid total tumor volume (PSMAAttv) and a higher aPSMA score for bone metastases were both associated with shorter biochemical progression-free survival in patients with prostate cancer.
(Editor’s note: For related content, see “Recurrent Prostate Cancer and Low PSA Levels: Can an Emerging PSMA PET Agent Have an Impact?,” “Emerging PET Radiotracer May Offer Multiple Advantages in Detecting Prostate Cancer” and “Can Pre-Op MRI Staging Help Predict Prostate Cancer Recurrence After a Prostatectomy?”)
“There are quantitative tools now that are readily available to help us have this prognostic evaluation of (patients) who may be at high risk for subsequent progression (of prostate cancer and) should be followed more closely. … There is more information than meets the eye in the scan that we can now quantify and extract,” emphasized Dr. Song, an assistant professor of radiology (nuclear medicine) at Stanford University.
For more insights from Dr. Song, watch the video below.
New Analysis Forecasts Substantial Cost Savings with the Use of Photon Counting CT for CCTA
March 8th 2025The use of ultra-high-resolution photon-counting CT in the evaluation of stable chest pain may significantly reduce follow-up tests and invasive coronary angiography (ICA) procedures, possibly resulting in millions in health-care cost savings, according to a cost-effectiveness analysis presented recently at the European Congress of Radiology.
Can Deep Learning Ultra-Fast bpMRI Have an Impact in Prostate Cancer Imaging?
March 3rd 2025A deep learning-enhanced ultra-fast bpMRI protocol offered similar sensitivity for csPCa as mpMRI with an 80 percent reduction in scan time, according to research findings presented at the European Congress of Radiology (ECR) conference.
ECR Mammography Study: Pre-Op CEM Detects 34 Percent More Multifocal Masses than Mammography
February 28th 2025In addition to contrast-enhanced mammography (CEM) demonstrating over a 90 percent detection rate for multifocal masses, researchers found that no significant difference between histological measurements and CEM, according to study findings presented at the European Congress of Radiology.