CHICAGO - Imagine reading a CT scan of a liver tumor and being able to easily view similar scans, diagnoses, or tumors. It’s a vision of Sandy Napel, PhD, professor of radiology at Stanford School of Medicine, who has been working with his colleagues to develop an image analysis and decision support tool.
CHICAGO - Imagine reading a CT scan of a liver tumor and being able to easily view similar scans, diagnoses, or tumors. It’s a vision of Sandy Napel, PhD, professor of radiology at Stanford School of Medicine, who has been working with his colleagues to develop an image analysis and decision support tool.
“How many times have you been looking at something and saying, ‘When was the last time I saw a liver tumor like this?’” Napel asked the audience at an RSNA session Wednesday.
His pilot system, known as the Electronic Physician Annotation Device (ePAD), characterizes images with features and semantic annotations that can be accessed by the computer for comparison to other images based on a feature vector that scores and reorders the images based on similarity. The database uses consistent radiology terms and features familiar to radiology to then input and organize the images.
For example, a radiologist can query the system based on shape of the lesion or texture, bringing up a host of similar images and information to inform the current read. The information can be used in decision support through computer-based image retrieval.
“This can be made to work and hopefully there will be a time in the near future where you will be able to look at images similar to the patient you are trying to evaluate,” he said, adding that it should be applicable in other disease and imaging scenarios. His group is now looking at how include genomic and other clinical data to images of non-small cell lung cancer to aid in diagnosis and treatment.
Such a computer-based image retrieval system will provide similar images, similar diagnoses, and even evidence-based, relevant data to help guide the radiologist in decision support. Napel added, “This will all be moved into PACS 2.0.”
AI Facilitates Nearly 83 Percent Improvement in Turnaround Time for Fracture X-Rays
December 19th 2023In addition to offering a 98.5 percent sensitivity rate in diagnosing fractures on X-ray, an emerging artificial intelligence (AI) software reportedly helped reduce mean turnaround time on X-ray fracture diagnosis from 48 hours to 8.3 hours, according to new research presented at the Radiological Society of North America (RSNA) conference.
The Reading Room: Artificial Intelligence: What RSNA 2020 Offered, and What 2021 Could Bring
December 5th 2020Nina Kottler, M.D., chief medical officer of AI at Radiology Partners, discusses, during RSNA 2020, what new developments the annual meeting provided about these technologies, sessions to access, and what to expect in the coming year.
Can an Emerging PET Radiotracer Enhance Detection of Prostate Cancer Recurrence?
December 14th 2023The use of 68Ga-RM2 PET/MRI demonstrated a 35 percent higher sensitivity rate than MRI alone for the diagnosis of biochemical recurrence of prostate cancer, according to research recently presented at the Radiological Society of North America (RSNA) conference.
RSNA 2020: Addressing Healthcare Disparities and Access to Care
December 4th 2020Rich Heller, M.D., with Radiology Partners, and Lucy Spalluto, M.D., with Vanderbilt University School of Medicine, discuss the highlights of their RSNA 2020 session on health disparities, focusing on the underlying factors and challenges radiologists face to providing greater access to care.
Can AI Improve Detection of Extraprostatic Extension on MRI?
December 4th 2023Utilizing a deep learning-based AI algorithm to differentiate between diagnostic and non-diagnostic quality of prostate MRI facilitated a 10 percent higher specificity rate for diagnosing extraprostatic extension on multiparametric MRI, according to research presented at the recent RSNA conference.
Study: Regular Mammography Screening Reduces Breast Cancer Mortality Risk by More than 70 Percent
November 30th 2023Consistent adherence to the five most recent mammography screenings prior to a breast cancer diagnosis reduced breast cancer death risk by 72 percent in comparison to women who did not have the mammography screening, according to new research findings presented at the annual Radiological Society of North America (RSNA) conference.