Residency training in radiology is being standardized across the European Union. This is crucial, given the many threats to the very existence of imaging departments. There is a shortage of radiologists in EU countries.
Residency training in radiology is being standardized across the European Union. This is crucial, given the many threats to the very existence of imaging departments. There is a shortage of radiologists in EU countries. Medical graduates who want start radiology residencies need to know more and more. Many trainees are also opting to work part time, but they still need to be supervised.
The end product that we are delivering to referring physicians is increasing rapidly in volume and changing in complexity. As more hospitals consider acquiring a PACS and migrating to an electronic patient record, staffing issues arise. Who will direct this process of going digital and furnish and interpret the online images? Should we have supertechs, hobby-radiologists, or some new entity?
Radiology is a recognized specialty in all 42 member nations of the European Society of Radiology. Many of these countries also recognize neuroradiology and pediatric radiology as subspecialties. Yet the qualifications for entering a radiology residency vary, and there is no computerized way of matching those graduates interested in diagnostic radiology with available training places.
The new five-year residency curriculum developed by the ESR education committee is a big step forward. Residents will undergo a mixture of didactic and practical training over the first three years. Teaching will be structured more flexibly in the remaining two years so trainees can develop sufficient competence to function autonomously as general radiologists or subspecialize. All of this must be completed in a 46-hour week, in accordance with EU rules on working time.
Today, however, we also have to instruct trainees in image manipulation, implications of robotic-led therapy, minimally invasive technology, and virtual techniques. Imaging has moved, and continues to move, into spheres of nanotechnology, personalized medicine, artificial intelligence, and molecular imaging. None of us really knows how this will affect the training of future imaging specialists.
We can image a lymph node the size of a match head and detect whether it contains malignant metastatic disease. We can monitor brain surgery in real-time using MRI. But consider how much time this consumes in terms of pre-, peri- and postprocedural image manipulation-and at what cost!
What are the implications for radiology training? Who will decide the protocols, make the 3D reconstructions, and run the computer-aided detection packages? What skills do these individuals need, and how will they obtain them? Do we accept that these trainees will operate outside of radiology's sphere, or do we work as a team to find the best solution?
A number of institutions have already begun to address these issues. The simplest option is to use supertechnologists or staff members with an existing interest in postprocessing and image manipulation. Computer-savvy radiologists and residents have often carried out this type of work in their "spare" time. Another option has been to use medical physicists and IT personnel, though these individuals are sometimes hampered by insufficient medical knowledge. We could also combine medicine and clinical physics, an approach taken by the Technical Medicine degree available at the Technical University Twenthe in close cooperation with Radboud University Medical School here in the Netherlands. Last, as at Massachusetts General Hospital in Boston, U.S, we could try yet another solution: dedicate a group of trained personnel, whose work-and this is crucial-is reimbursed, to image manipulation.
The conclusion is clear. We expand the training of radiology residents, or we seek new players with different skill sets. Perhaps the answer requires a combination of both approaches. Either way, we need to think who should be part of the modern imaging team.
If we are to control our own destiny in the diagnostic chain, we must train the next generation of radiologists in more than a core curriculum. This may mean training as physician extenders personnel with enough medical knowledge to understand the implications of imaging on the diagnostic and therapeutic process who also possess sufficient technical and engineering knowledge to support the same. Expansion of the residency curriculum in the short term is highly unlikely. These people will therefore need to be integrated into residency programs in a piggy-back fashion, possibly learning alongside residents for a specified period of time.
PROF. BLICKMAN is chair of radiology at UMC St Radboud, Nijmegen, the Netherlands. This column is based on his lecture at the Management in Radiology conference in Budapest, Hungary, October 2006.
Study Reaffirms Low Risk for csPCa with Biopsy Omission After Negative Prostate MRI
December 19th 2024In a new study involving nearly 600 biopsy-naïve men, researchers found that only 4 percent of those with negative prostate MRI had clinically significant prostate cancer after three years of active monitoring.
Study Examines Impact of Deep Learning on Fast MRI Protocols for Knee Pain
December 17th 2024Ten-minute and five-minute knee MRI exams with compressed sequences facilitated by deep learning offered nearly equivalent sensitivity and specificity as an 18-minute conventional MRI knee exam, according to research presented recently at the RSNA conference.
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.