In a recent study of a deep learning software in patients with suspected prostate cancer, researchers noted no difference in the detection of clinically significant prostate cancer nor PI-RADS scoring consistency.
The use of an adjunctive deep learning (DL) software made no difference in the diagnosis of clinically significant prostate cancer (csPCa) with bi-parametric magnetic resonance imaging (MRI), according to newly published research. The study authors also noted the DL software showed no difference in the consistency of scoring with the Prostate Imaging-Reporting and Data System (PI-RADS) for radiologists of varying experience levels.
For the retrospective study, published in Insights into Imaging, researchers assessed the use of deep learning (DL) software (Prostate AI, version Syngo.Via VB60, Siemens Healthineers) in 153 men (mean age of 63.59) who had bi-parametric MRI due to suspicion of prostate cancer (PCa). Four radiologists of varying experience, ranging from two years of experience to more than 20 years of experience, performed 3T MRI exams with and without the DL software, according to the study.
After utilizing the DL software, the researchers found that the four reviewing radiologists changed their initial PI-RADS score assessment a total of six times.
In assessing the area under the receiver operating curve (AUROC) for the detection of csPA, the study authors said the DL software showed no difference in the AUROC for any of the radiologists. They also noted significantly higher AUROCs for the radiologist with more than 20 years of experience (92 percent) and a radiologist with five years of experience (85 percent) in comparison to standalone use of the DL software (74 percent).
“Overall, the radiologists changed their initial PI-RADS scores in ~ 1% of the scans with the DL software, and radiologists with > 5 years of experience provided a statistically higher performance in identifying csPCa than the DL software. Furthermore, the DL software did not improve radiologists’ performance in identifying csPCa,” wrote study co-author Ercan Karaarslan, M.D., a professor of radiology at the School of Medicine at Acibadem Mehmet Ali Aydinlar University and director of radiology at the Acibadem Maslak Hospital in Istanbul, Turkey, and colleagues.
(Editor’s note: For related content, see “Study Says Targeted Biopsy with MRI Reduces Overdiagnosis of Prostate Cancer by Half” and “Could a New PSMA PET Agent Improve Detection of Distant Metastatic Lesions in Patients with Prostate Cancer?”)
The study authors also pointed out that the DL software rarely assigned a PI-RADS 3 score whereas the most experienced reviewing radiologist assigned a PI-RADS 3 score in approximately 25 percent of the cases.
“We suggest that the potential underlying factors that lead the DL software to assign PI-RADS 3 to only a minority of the patients and whether this tendency is beneficial (e.g., sparing patients from unnecessary biopsy or identifying clinically insignificant cancers) should be investigated in future work,” noted Karaarslan and colleagues.
The researchers acknowledged the limitations of a small sample size with the study data derived from a single tertiary facility. Pointing out that the DL software assessed in the study was not compatible with contrast-enhanced images, the authors employed bi-parametric MRI despite multiple guidelines recommending multiparametric MRI over bi-parametric MRI. Accordingly, Karaarslan and colleagues said general extrapolation of their results may be limited with multiparametric MRI being routinely utilized in patient care.
Can Generative AI Facilitate Simulated Contrast Enhancement for Prostate MRI?
January 14th 2025Deep learning synthesis of contrast-enhanced MRI from non-contrast prostate MRI sequences provided an average multiscale structural similarity index of 70 percent with actual contrast-enhanced prostate MRI in external validation testing from newly published research.
Can MRI-Based AI Enhance Risk Stratification in Prostate Cancer?
January 13th 2025Employing baseline MRI and clinical data, an emerging deep learning model was 32 percent more likely to predict the progression of low-risk prostate cancer (PCa) to clinically significant prostate cancer (csPCa), according to new research.
Study Emphasizes PSMA PET Staging of High-Risk, Hormone Sensitive Prostate Cancer
January 4th 2025In patients with high-risk, hormone sensitive prostate cancer who had no evidence of metastasis on conventional imaging, PSMA PET revealed polymetastatic disease in 24 percent of patients and M1 disease staging in 46 percent of patients.
Can MRI and Micro-Ultrasound Guidance Bolster Focal Laser Ablation Outcomes for Prostate Cancer?
January 3rd 2025For patients with localized prostate cancer and PI-RADS 3 or higher lesions, MRI-guided micro-ultrasound multifiber focal laser ablation had an 18 percent recurrence rate at one year, according to newly published research.
Study Reaffirms Low Risk for csPCa with Biopsy Omission After Negative Prostate MRI
December 19th 2024In a new study involving nearly 600 biopsy-naïve men, researchers found that only 4 percent of those with negative prostate MRI had clinically significant prostate cancer after three years of active monitoring.
Can AI Enhance PET/MRI Assessment for Extraprostatic Tumor Extension in Patients with PCa?
December 17th 2024The use of an adjunctive machine learning model led to 17 and 21 percent improvements in the AUC and sensitivity rate, respectively, for PET/MRI in diagnosing extraprostatic tumor extension in patients with primary prostate cancer.