Digital mammography with a photon-counting system had higher cancer detection rates than traditional systems.
Digital mammography with a photon-counting system provides high diagnostic performance for breast cancer, according to an article published in the journal Radiology.
Researchers from Germany undertook a retrospective study to analyze prospectively acquired data from mammography screening programs (DR photon-counting) of 13,312 women that took place in North Rhine-Westphalia and 993,822 women state-wide (37 computed radiography mammography systems and 55 DR systems). The photon-counting technique is a promising digital radiography (DR) approach that uses a unique detector to decrease scattered radiation and noise. The screenings took place between 2009 and 2010.
The researchers assessed diagnostic performance with cancer detection rate, recall rate, and proportion of small invasive cancers and ductal carcinoma in situ (DCIS). Mean glandular dose was calculated for DR photon counting and for a conventional DR subgroup. Differences were tested with x2 and t tests.
The findings showed that the DR photon-counting scan system had a cancer detection rate of 0.76 percent for subsequent screening, compared with 0.59 percent for the other screening units. The recall rate was 5.4 percent for the photon-counting method and 3.4 percent for the other methods.
“The higher cancer detection resulting from the use of the DR photon-counting scan system is due to high detection of both small, invasive cancers and ductal carcinoma in situ,” co-author Walter Heindel, MD, said in a release. Heindel is from the Department of Clinical Radiology at the University Hospital Muenster in Muenster.
The photon-counting technique had almost twice the detection rate of other methods for DCIS. It had a higher DCIS detection rate than the statewide units and the conventional DR subgroup.
In addition, the mean average glandular radiation dose of the DR photon-counting scan system was significantly lower than the conventional DR systems with the individually used parameters of the automatic exposure control.
The photon-counting technique also offers lateral dose modulation during the image acquisition, which can help account for differences in breast density. Cancer often is more difficult to detect in women with dense breasts.
“The innovative photon-counting technique offers further research potential,” Heindel said. “One future research direction is the application of spectral imaging for quantification of breast glandular tissue, addressing the problem of breast density.”
FDA Clears Updated AI Platform for Digital Breast Tomosynthesis
November 12th 2024Employing advanced deep learning convolutional neural networks, ProFound Detection Version 4.0 reportedly offers a 50 percent improvement in detecting cancer in dense breasts in comparison to the previous version of the software.
Is the Kaiser Score More Effective than BI-RADS for Assessing Contrast-Enhanced Mammography and MRI?
October 14th 2024For women with breast-enhanced masses, Kaiser scoring (KS) demonstrated a 20 percent higher AUC than BI-RADS classification for contrast-enhanced mammography (CEM) and was comparable to KS for breast MRI.
FDA Clears New Features in AI-Powered Mammography Software Suite
October 11th 2024Therapixel’s MammoScreen suite has received 510(k) FDA clearances for a breast density assessment feature and updated software that includes automated pre-reporting, which reportedly expedites reporting of mammography findings.