Computer-aided detection significantly improves the sensitivity of pulmonary embolism imaging, according to a study that will be presented at the 2008 RSNA meeting. Other studies show that specially developed CAD schemes can detect flat lesions that are often missed in CT colonography.
Computer-aided detection significantly improves the sensitivity of pulmonary embolism imaging, according to a study that will be presented at the 2008 RSNA meeting. Other studies show that specially developed CAD schemes can detect flat lesions that are often missed in CT colonography.
"There has been steady improvement over the years in the sensitivity and specificity of nodule detection," said Dr. Heber M. MacMahon, director of thoracic imaging at the University of Chicago Medical Center.
The most urgent issue and the biggest barrier to the use of CAD technology has been its lack of integration with PACS, he said.
"They have not been tightly integrated into PACS, so it takes a lot of time to evaluate," MacMahon said. "If it takes more than a few minutes to bring up the interface and extract results, people won't use it in their practice because of the pressure to read large amounts of scans."
CAD and PACS developers have worked together to improve the software so that nodule detection can be done more quickly and reliably, he said.
Regarding the rate of false positives, MacMahon said all detection systems have false positives, and recent software improvements have lowered them into an acceptable range.
In another study, a specially developed CAD scheme was used to detect flat lesions in the colon, because existing CAD schemes are designed for detecting the common bulbous polyp shape. Researchers developed a CAD scheme consisting of colon segmentation based on histogram analysis and mathematical morphology, detection of polyp candidates based on intensity and morphologic feature analysis, and linear discriminant analysis for classification into polyps or nonpolyps.
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.
Can AI Facilitate Single-Phase CT Acquisition for COPD Diagnosis and Staging?
December 12th 2024The authors of a new study found that deep learning assessment of single-phase CT scans provides comparable within-one stage accuracies to multiphase CT for detecting and staging chronic obstructive pulmonary disease (COPD).
Can MRI-Based AI Bolster Biopsy Decision-Making in PI-RADS 3 Cases?
December 9th 2024In patients with PI-RADS 3 lesion assessments, the combination of AI and prostate-specific antigen density (PSAD) level achieved a 78 percent sensitivity and 93 percent negative predictive value for clinically significant prostate cancer (csPCa), according to research presented at the Radiological Society of North American (RSNA) conference.