University researchers have devised a unique 3D teleradiology viewer that allows remote radiologists to collaborate simultaneously using the same image.
University researchers have devised a unique 3D teleradiology viewer that allows remote radiologists to collaborate simultaneously using the same image.
"This technology provides sophisticated image analysis features, enabling seamless collaboration across remote locations without any proprietary hardware and software," said medical imaging expert Vipin Chaudhary, Ph.D., an associate professor of computer science and engineering at the University at Buffalo.
Unlike other teleradiology solutions, Dynamic Medical Viewer allows multiple radiologists to collaborate on a case simultaneously from different remote locations. Everyone can look at the same 3D image at the same time, pointing out regions of interest and making annotations, he said.
Other teleradiology products available tend merely to retrieve images from a PACS, then transmit the studies somewhere so radiologists can read them, according to Chaudhary.
"What this system enables is the capability for radiologists in various locations to actually collaborate while doing the readings," he said.
The system works on any type of computer, whether desktop, laptop, or handheld, Chaudhary said. That's possible because the system is designed around a thin-client architecture, meaning remote radiologists who receive the studies are not required to have the massive computing power necessary to manipulate 3D images.
"Since we offload most of the 3D computing to the server side, we can do 3D image analysis extremely fast," he said.
The radiology world is moving more and more toward 3D imaging, and industry needs to get to the next level of PACS, where it provides more than data storage and retrieval services, Chaudhary said.
"First-generation PACS are fairly old now," Chaudhary said. "They serve merely as data repositories. The migration toward next-generation PACS, where you will have huge amounts of computing services attached directly to the PACS, is where the industry is moving. I think our development is in that direction."
A U.S. patent application on the technology is pending. The system has been licensed to a Buffalo firm called Medcotek, one of several companies located in the university's Center for Excellence that are either collaborating with or were founded by university researchers.
The company plans to launch the system later this year, according to chief financial officer Robert M. States.
Emerging AI Algorithm Shows Promise for Abbreviated Breast MRI in Multicenter Study
April 25th 2025An artificial intelligence algorithm for dynamic contrast-enhanced breast MRI offered a 93.9 percent AUC for breast cancer detection, and a 92.3 percent sensitivity in BI-RADS 3 cases, according to new research presented at the Society for Breast Imaging (SBI) conference.
The Reading Room Podcast: Current Perspectives on the Updated Appropriate Use Criteria for Brain PET
March 18th 2025In a new podcast, Satoshi Minoshima, M.D., Ph.D., and James Williams, Ph.D., share their insights on the recently updated appropriate use criteria for amyloid PET and tau PET in patients with mild cognitive impairment.
Can Abbreviated Breast MRI Have an Impact in Assessing Post-Neoadjuvant Chemotherapy Response?
April 24th 2025New research presented at the Society for Breast Imaging (SBI) conference suggests that abbreviated MRI is comparable to full MRI in assessing pathologic complete response to neoadjuvant chemotherapy for breast cancer.
Clarius Mobile Health Unveils Anterior Knee Feature for Handheld Ultrasound
April 23rd 2025The T-Mode Anterior Knee feature reportedly offers a combination of automated segmentation and real-time conversion of grayscale ultrasound images into color-coded visuals that bolster understanding for novice ultrasound users.