Tested so far in animal models, this tracer could further the development of treatments for this life-threatening disease for which there are currently no therapies.
A new PET radiotracer can effectively target a biomarker associated with abdominal aortic aneurysms (AAA), potentially predicting when they will rupture.
This research, presented during the Society of Nuclear Medicine and Molecular Imaging 2021 Annual Meeting, is significant because using this radiotracer can improve AAA diagnosis and provide information that can further AAA treatment development. Currently there are no treatments for this largely asymptomatic, life-threatening degenerative vascular disease.
For more SNMMI 2021 coverage, click here.
The results of this study can go a long way in improving care for patients affected by AAA, investigators said.
“Right now, clinical diagnosis of AAA relies on anatomic measurements of AAA diameter, which is a poor marker for the prediction of rupture,” said Gyu Seong Heo, Ph.D., a post-doctoral researcher at Washington University School of Medicine in St. Louis, Mo. “Thus, there is an unmet clinical need for a novel molecular biomarker to determine the underlying processes that lead to aneurysm expansion and rupture and to serve as a therapeutic target for better management of AAA patients.”
Heo’s team identified chemokine receptor type 2 (CCR2) as a possible, novel biomarker for AAA. For their study, they developed 64Cu-DOTA-ECL1i. It has been confirmed as safe and effective, and it has been used for first-in-AAA patient imaging of CCR2.
They used the tracer in pre-clinical animal AAA rupture models to evaluate CCR2-targeted treatments and found the imaging was highly suggestive impending AAA ruptures. They also demonstrated, in a specific group of animals, CCR2 inhibitor is an effective in preventing AAA rupture.
Despite only being tested so far in animals, the radiotracer holds promise in human trials, the team said.
“Given the availability of CCR2 inhibitors for human uses, our work holds great potential to assess AAA vulnerability, screen AAA patients for CCR2-targeted treatment, and determine treatment response for optimal outcomes,” Heo said.
For more coverage based on industry expert insights and research, subscribe to the Diagnostic Imaging e-Newsletter here.
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.
Study Shows Merits of CTA-Derived Quantitative Flow Ratio in Predicting MACE
December 11th 2024For patients with suspected or known coronary artery disease (CAD) without percutaneous coronary intervention (PCI), researchers found that those with a normal CTA-derived quantitative flow ratio (CT-QFR) had a 22 percent higher MACE-free survival rate.
The Reading Room: Racial and Ethnic Minorities, Cancer Screenings, and COVID-19
November 3rd 2020In this podcast episode, Dr. Shalom Kalnicki, from Montefiore and Albert Einstein College of Medicine, discusses the disparities minority patients face with cancer screenings and what can be done to increase access during the pandemic.