CONTEXT: Dr. Francis Blankenberg and colleagues at Stanford University's nuclear medicine department have developed a nondestructive way, based on two fragments of human RNAse I, to radiolabel the tumor angiogenesis marker VEGF (vascular endothelial growth factor). The larger and sturdier standardized fragment, the "adapter protein," is radiolabeled with technetium-99m. It is then simply mixed with a fusion protein consisting of the smaller complementary fragment, the "docking tag," and targeting protein VEGF. The two proteins self-assemble into a Tc-99m-VEGF targeting complex for radionuclide imaging.
RESULTS: Using bioluminescent imaging (BLI) and radionuclide imaging, the researchers tracked the growth of subcutaneous and lung tumors in mice implanted or injected with luciferase-expressing murine mammary adenocarcinoma cells. One hour after injecting the tracer, planar images were acquired that showed significantly increased uptake of VEGF compared with the single-chain Hu-P4G7 anti-VEGF-R2 antibody radiolabeled complexes. Both tracers bound to the VEGF-R2 receptor, but only VEGF was internalized into tumor endothelial cells.
IMAGE: A: Planar whole-body BLI of mouse with right shoulder tumor. B: Radionuclide image of same mouse after injection of Tc-99m-HuS/Hu-VEGF. C: Radionuclide image of mouse with left shoulder tumor after injection of Tc-99m-HuS/Hu-P4G7. D: BLI of same mouse.
IMPLICATIONS: The VEGF imaging complex is stable and capable of routinely targeting lesions of about 1 mm in diameter in vivo. The Stanford team expects to develop a similar approach for delivery of other targeting proteins, according to Blankenberg.
"It is anticipated that this technique could be used to create a library of fusion proteins, all of which could be rapidly and nondestructively labeled using the identical radiochemistry," he said.
Study Reaffirms Low Risk for csPCa with Biopsy Omission After Negative Prostate MRI
December 19th 2024In a new study involving nearly 600 biopsy-naïve men, researchers found that only 4 percent of those with negative prostate MRI had clinically significant prostate cancer after three years of active monitoring.
Study Examines Impact of Deep Learning on Fast MRI Protocols for Knee Pain
December 17th 2024Ten-minute and five-minute knee MRI exams with compressed sequences facilitated by deep learning offered nearly equivalent sensitivity and specificity as an 18-minute conventional MRI knee exam, according to research presented recently at the RSNA conference.
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.