The Pulmonary Embolism (PE) Triage and Notification (PETN) module with RapidAI’s RapidPE platform reportedly demonstrated over 90 percent sensitivity and specificity rates for detection of central PE on computed tomography (CT), according to multicenter study findings presented at the 9th Annual Pulmonary Embolism Symposium.
An emerging artificial intelligence (AI)-powered tool may facilitate improved accuracy in the detection of central pulmonary embolism (PE).
In a recent multicenter retrospective study, researchers examined the use of the Pulmonary Embolism (PE) Triage and Notification (PETN) module — which is included in RapidAI’s RapidPE platform — in a multicenter study involving data from 1,079 computed tomography (CT) scans.
The PETN module demonstrated an overall 94 percent sensitivity rate and a 93 percent specificity rate for central PE, according to the study findings that were presented recently at the 9th Annual Pulmonary Embolism Symposium in Austin, Tx.
For people 50 years of age and younger, the researchers noted a 90 percent sensitivity rate and a 95 percent specificity rate. For people 70 years of age and older, the study authors noted the PETN module had a 95 percent sensitivity rate and a 90 percent specificity rate for central PE.
Additionally, the PETN module offered similar diagnostic performance across CT scanners from different manufacturers, according to the study. In their review of positive scans using CT scanners from Philips, Toshiba, Siemens Healthineers and GE, the study authors noted an average sensitivity of 94.25 and average specificity of 92.25 for central PE.
“The results of this study demonstrate that RapidAI’s Pulmonary Embolism Triage and Notification module performs with a high sensitivity, specificity, PPV and NPV for identification of central PE. This is true regardless of CT scanner manufacturer and across gender and age spectra,” wrote lead author Peter Monteleone, M.D., an assistant professor in the Department of Internal Medicine at the Dell Medical School at the University of Texas-Austin, and colleagues.
(Editor’s note: For related content, see “PE Triage Platform From RapidAI Receives FDA 510(k) Clearance” and “Expediting the Management of Incidental Pulmonary Emboli on CT.”)
Meta-Analysis Shows Merits of AI with CTA Detection of Coronary Artery Stenosis and Calcified Plaque
April 16th 2025Artificial intelligence demonstrated higher AUC, sensitivity, and specificity than radiologists for detecting coronary artery stenosis > 50 percent on computed tomography angiography (CTA), according to a new 17-study meta-analysis.
New bpMRI Study Suggests AI Offers Comparable Results to Radiologists for PCa Detection
April 15th 2025Demonstrating no significant difference with radiologist detection of clinically significant prostate cancer (csPCa), a biparametric MRI-based AI model provided an 88.4 percent sensitivity rate in a recent study.
Can CT-Based AI Radiomics Enhance Prediction of Recurrence-Free Survival for Non-Metastatic ccRCC?
April 14th 2025In comparison to a model based on clinicopathological risk factors, a CT radiomics-based machine learning model offered greater than a 10 percent higher AUC for predicting five-year recurrence-free survival in patients with non-metastatic clear cell renal cell carcinoma (ccRCC).
Could Lymph Node Distribution Patterns on CT Improve Staging for Colon Cancer?
April 11th 2025For patients with microsatellite instability-high colon cancer, distribution-based clinical lymph node staging (dCN) with computed tomography (CT) offered nearly double the accuracy rate of clinical lymph node staging in a recent study.