Multiparametric MRI helps identify low- and high-grade brain gliomas, reducing risk of inappropriate or delayed surgery.
Multiparametric MR imaging significantly improved discrimination between low- and high-grade brain gliomas, according to a study published in the journal Radiology.
Researchers from Italy undertook a retrospective study to determine how multiparametric MR imaging, taking into account the heterogeneity of the lesions at MR imaging, affected current radiologic reporting methods and grading of brain gliomas.
A total of 118 patients with histologically confirmed brain gliomas were evaluated. The patients had undergone conventional and advanced MR sequences (perfusion-weighted imaging, MR spectroscopy, and diffusion-tensor imaging). Three evaluations were conducted:
The researchers found that there were significant differences in age, relative cerebral blood volume (rCBV) in contrast-enhanced regions (area under the ROC curve [AUC] = 0.937), areas of lowest signal intensity on T2-weighted images, restricted diffusivity regions, and choline/creatine ratio in regions with the lowest signal intensity on T2-weighted images.
“[Discriminant function analysis] (DFA) that included age; rCBV in contrast-enhanced regions, areas of lowest signal intensity on T2-weighted images, and areas of restricted diffusivity; and choline/creatine ratio in areas with lowest signal intensity on T2-weighted images was used to classify 95 percent of patients correctly,” the authors wrote. “Quantitative analysis showed a higher concordance with histologic findings than qualitative and semiquantitative methods (P < .0001).”
The researchers concluded that quantitative multiparametric MR imaging evaluation incorporating heterogeneity at MR imaging significantly improved discrimination between low- and high-grade brain gliomas with a very high AUC. This reduced the risk of inappropriate or delayed surgery.
New CT and MRI Research Shows Link Between LR-M Lesions and Rapid Progression of Early-Stage HCC
January 2nd 2025Seventy percent of LR-M hepatocellular carcinoma (HCC) cases were associated with rapid growth in comparison to 12.5 percent of LR-4 HCCs and 28.5 percent of LR-4 HCCs, according to a new study.
Study Examines Impact of Deep Learning on Fast MRI Protocols for Knee Pain
December 17th 2024Ten-minute and five-minute knee MRI exams with compressed sequences facilitated by deep learning offered nearly equivalent sensitivity and specificity as an 18-minute conventional MRI knee exam, according to research presented recently at the RSNA conference.