A study involving the imaging histories of more than 200 children with sensorineural hearing loss recommends MRI instead of CT for identifying soft-tissue defects associated with inner ear anomalies.
A study involving the imaging histories of more than 200 children with sensorineural hearing loss recommends MRI instead of CT for identifying soft-tissue defects associated with inner ear anomalies.Sensorineural hearing loss affects thousands of children per year, according to principal investigator Dr. John E. McClay. About half of all cases are thought to be genetic, 25% are acquired, and 25% originate from unknown causes.Radiography, including plain-film x-rays and CT, is often used to evaluate inner ear abnormalities in children with hearing loss. These methods evaluate the bones that contain the working components of inner-ear hearing. However, defects in the soft tissue within these bone structures also may be responsible for hearing loss.McClay and colleagues at the University of Texas at Southwestern Medical Center and Children's Medical Center Dallas analyzed the medical records of 227 children aged one month to 17 years (average age 5.3 years) with a diagnosis of sensorineural hearing loss. The children underwent MRI between June 1996 and June 2002. A total of 170 children had clinical information available and were included in the study. Of these, 101 (59%) had hearing loss in both ears and 69 (41%) had hearing loss in one ear, adding up to a total of 271 ears with sensorineural hearing loss.The results were published in the September issue of Archives of Otolaryngology -- Head & Neck Surgery (2008;134[9]:945-952).
The MRI results showed the following:
McClay and colleagues concluded that a thorough workup to identify the cause of sensorineural hearing loss should be considered in each patient, though the specific origin of sensorineural hearing loss may remain undiagnosed in many patients.
High-resolution CT has been the imaging modality of choice in the initial workup of these patients, McClay said. The study indicates, however, that soft-tissue structures of the inner ear responsible for the electrochemical transfer of sound to the brain, such as the membranous labyrinth and the cochlear nerve, are not evaluated well with that modality. "With MRI, these soft-tissue components of hearing from the cochlea to the auditory cortex can be elucidated, which should improve our ability to appropriately diagnose the location of the defect in these children with sensorineural hearing loss," he said.
FDA Grants Expanded 510(k) Clearance for Xenoview 3T MRI Chest Coil in GE HealthCare MRI Platforms
November 21st 2024Utilized in conjunction with hyperpolarized Xenon-129 for the assessment of lung ventilation, the chest coil can now be employed in the Signa Premier and Discovery MR750 3T MRI systems.
New Study Examines Agreement Between Radiologists and Referring Clinicians on Follow-Up Imaging
November 18th 2024Agreement on follow-up imaging was 41 percent more likely with recommendations by thoracic radiologists and 36 percent less likely on recommendations for follow-up nuclear imaging, according to new research.