New research suggests that AI-powered assessment of digital breast tomosynthesis (DBT) for short-term breast cancer risk may help address racial disparities with detection and shortcomings of traditional mammography in women with dense breasts.
Can artificial intelligence (AI) play a role in mitigating disparities with breast cancer screening?
For the multicenter study, presented at the 2024 San Antonio Breast Cancer Symposium (SABCS), researchers evaluated the ProFound AI Breast Health Suite (iCAD) for assessing short-term breast cancer risk based on digital breast tomosynthesis (DBT) images for 3,558 women. The cohort included 394 cases of breast cancer detection, according to the study. For the ProFound AI Breast Health Suite, one-year AI risk scores < 34 percent denote average risk, scores between 34 percent and 60 percent reveal intermediate risk and scores > 60 percent are considered high-risk scores.
Overall, women with intermediate risk scores comprised 13.1 percent of the cohort, high-risk scores accounted for 18.2 percent of the study participants and the remaining 68.7 percent of the cohort had average risk scores.
While acknowledging differences in the racial composition of the adjusted high-risk screening population, the study authors noted similarities in breast cancer prevalence for those who had high AI one-year risk scores. In this group, the researchers pointed out a 1 in 38 prevalence of breast cancer in White women, a 1 in 41 prevalence in Black women, a 1 in 34 prevalence for Asian women and a 1 in 55 prevalence for women of other races.
“The case scores did not vary significantly across racial subgroups in our dataset, suggesting that the accuracy of the AI software was consistent across races,” noted Chirag Parghi, M.D., M.B.A., the chief medical officer for Solis Mammography.
The study authors also noted similarities in AI high-risk scoring between women with dense breasts and those with non-dense breasts. For women with dense breasts and high AI risk scores, the breast cancer prevalence was 1 in 36 in comparison to a 1 in 41 prevalence for women with non-dense breasts and high AI risk scores, according to the researchers.
“Based on our results, image-based risk can potentially offset known gaps in breast cancer detection by traditional mammography in patients with dense tissue and address known disparities across races,” emphasized Parghi and colleagues.
Reference
1. Parghi C, Pantleo J, Shisler J, et al. Image-derived short term breast cancer risk score in the analysis of breast cancer prevalence in screening population by race and breast density. Poster presented at the 2024 San Antonio Breast Cancer Symposium (SABCS) December 10-13, San Antonio, Texas.
Can AI Facilitate Single-Phase CT Acquisition for COPD Diagnosis and Staging?
December 12th 2024The authors of a new study found that deep learning assessment of single-phase CT scans provides comparable within-one stage accuracies to multiphase CT for detecting and staging chronic obstructive pulmonary disease (COPD).
New Interventional Radiology Research Shows Merits of Genicular Artery Embolization for Knee OA
December 3rd 2024In a cohort of over 160 patients with knee osteoarthritis (OA), including grade 4 in nearly half of the cases, genicular artery embolization led to an 87 percent improvement in the quality of life index, according to research presented at the