Every imaging facility should have a solid peer review system, and peer review data should be used in the careful development of quality metrics in radiology performance.
I recently visited Philadelphia, and while there, I came across some of Ben Franklin’s more famous quotations, including this well-known one: “Those who live in glass houses shouldn’t throw stones.”
I’ve relied on that notion many times as a radiologist. Why? Because to me we are in the most humbling of specialties. We all make errors and our errors are usually in plain evidence in perpetuity. So, I’ve been hesitant to be overly critical of others’ mistakes.
But lately I’ve started to think a lot more about that position. Isn’t that also an abdication of responsibility of quality in my profession? Specifically I’ve come across poor quality reports that have led to over-imaging (often read by non-radiologists) or incorrect treatment. While I’ve made my share of errors, I know about them because they are pointed out to me; and as a result, I am able to consider what I can do to improve.
But what about when someone orders their own test and reads it, or one of their partners reads it? Is there oversight for this? There’s no one else typically to feed back an “over-read” disagreement if you read your own stuff. Do those readers find out what mistakes they made? Moreover, are they challenged to improve and held to any standards for this? I think this is an area where health imaging is sorely lacking.
So it points out a few things:
First is the importance of peer review for all readers - and peer review with consequences. Every imaging facility needs to provide a system for peer review and to create a system that allows for verification of errors by second or more peer reviews. To me, there should be grading not only of accuracy, but clinical relevance. For those errors that are clinically relevant, and that are agreed upon by reviewers, there should be some form of education and redirection. For repeated errors, there should be mandatory CME or otherwise documentation of competency.
Second is the use of peer review data in the careful development of quality metrics in radiology performance. Such metrics would cover far more ground than just report accuracy, and include a variety of service errors, omissions or dysfunction, but should include elements of accuracy and report completeness. Metrics we are all aware of are things like turn-around-time, but can include far more than this, including safety data and regularity of fulfilling documentation requirements. Such metrics should emphatically be directed at items that improve the patient experience or safety.
We owe our patients this much. And we certainly can’t be critical of the quality of anyone else, if do not firs have our own house in order.
New Study Examines Short-Term Consistency of Large Language Models in Radiology
November 22nd 2024While GPT-4 demonstrated higher overall accuracy than other large language models in answering ACR Diagnostic in Training Exam multiple-choice questions, researchers noted an eight percent decrease in GPT-4’s accuracy rate from the first month to the third month of the study.
FDA Grants Expanded 510(k) Clearance for Xenoview 3T MRI Chest Coil in GE HealthCare MRI Platforms
November 21st 2024Utilized in conjunction with hyperpolarized Xenon-129 for the assessment of lung ventilation, the chest coil can now be employed in the Signa Premier and Discovery MR750 3T MRI systems.
FDA Clears AI-Powered Ultrasound Software for Cardiac Amyloidosis Detection
November 20th 2024The AI-enabled EchoGo® Amyloidosis software for echocardiography has reportedly demonstrated an 84.5 percent sensitivity rate for diagnosing cardiac amyloidosis in heart failure patients 65 years of age and older.