In a recent video interview, abdominal radiologist Sonia Gupta, MD discussed key principles in assessing potential alliances with artificial intelligence (AI) vendors and the potential of AI to alleviate the time-consuming, administrative aspects of patient care.
What are the key questions radiologists should ask when assessing artificial intelligence (AI) vendors? While the list can be long, one important question is ascertaining the volume and nature of the data used to develop and train a given AI algorithm, according to Sonia Gupta, MD, an abdominal radiologist, and chief medical officer at Change Healthcare.
In a recent video interview, Dr. Gupta said knowing the volume of cases that went into the training of an AI model is an important consideration as is the diversity of that data in terms of factors such as age, gender, health issues and comorbidities to name a few.
“All of those factors will influence the model training and ultimately the performance of that AI algorithm,” noted Dr. Gupta, who lectured about AI at the recent Society for Imaging Informatics in Medicine (SIIM) conference. “I encourage radiologists looking at potential AI vendors to dig into that information right off the bat.”
Other essential considerations include how the AI algorithm will be integrated into the current workflow and establishing timeline expectations for that integration into one’s radiology practice, according to Dr. Gupta, who is affiliated with Radiology Partners.
Dr. Gupta said there is a lot of potential for AI to mitigate some of the administrative burdens for radiologists and allow them to get back to the essentials of interpreting imaging and facilitating optimal patient care.
“I really want to see AI take the lead (in reducing administrative tasks) and make things easier so I can spend more time looking at the images and doing what I was trained to do,” added Dr. Gupta.
For more insights from Dr. Gupta, watch the video below:
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.
Can AI Facilitate Single-Phase CT Acquisition for COPD Diagnosis and Staging?
December 12th 2024The authors of a new study found that deep learning assessment of single-phase CT scans provides comparable within-one stage accuracies to multiphase CT for detecting and staging chronic obstructive pulmonary disease (COPD).
Study Shows Merits of CTA-Derived Quantitative Flow Ratio in Predicting MACE
December 11th 2024For patients with suspected or known coronary artery disease (CAD) without percutaneous coronary intervention (PCI), researchers found that those with a normal CTA-derived quantitative flow ratio (CT-QFR) had a 22 percent higher MACE-free survival rate.