In a recent video interview, Sonia Gupta, MD discussed a number of ongoing developments with artificial intelligence (AI) in radiology, ranging from market consolidation of AI vendors to maximizing automation and efficiency with patient triage, reporting and follow-up of incidental findings.
One of the ongoing trends with the development of artificial intelligence (AI) modalities in radiology is an increasing emphasis on improving efficiencies with non-interpretative tasks.
In a recent interview, Sonia Gupta, MD said the combination of AI and natural language processing can help retrieve and analyze key historical points from a patient’s electronic medical record (EMR). Dr. Gupta emphasized that this technology could help streamline patient triage, radiology reporting and the management of incidental finding follow-up.
“(With) incidental finding follow-up, AI reads the report and detects the findings that need follow-up … and can also insert the follow-up recommendations for you into the report. Again, this is all non-interpretative and natural language processing-based type of AI. I think that is a really great opportunity we can all utilize,” maintained Dr. Gupta, an abdominal radiologist, a board member of the American Board of Artificial Intelligence in Medicine, and the chief medical officer of Change Healthcare.
(Editor’s note: For related content, see “Emerging Insights on Improving Radiology Workflows,” “Assessing the Value Proposition of AI in Radiology” and “AI in Radiology: Top Five Articles of 2022.”)
Dr. Gupta said the hope is that this emphasis on simplifying non-interpretative tasks could reduce time-consuming elements of radiology workflows and help curtail burnout.
Noting that approximately one-third of radiologists are currently utilizing some form of AI in practice, Dr. Gupta said the combination of cancer screening with AI and appropriate reimbursement could accelerate AI adoption in radiology.
Pointing out there are currently upward of 200 Food and Drug Administration (FDA) 510(k) clearances in radiology, Dr. Gupta said the ongoing consolidation of AI vendors may make it easier for radiologists to choose among relevant systems for their practice. She added that consolidation could be a boon for early adopters, who may gain access to more AI offerings than they originally signed up for.
For more insights from Dr. Gupta, watch the video below.
Study Assesses Potential of Seven-Minute AI-Enhanced 3T MRI of the Shoulder
February 20th 2025Researchers found that the use of seven-minute threefold parallel imaging-accelerated deep learning 3T MRI had 89 percent sensitivity for supraspinatus-infraspinatus tendon tears and 93 percent sensitivity for superior labral tears.
Study Explores Impact of Insurance on Treatment and Referrals for Patients with Uterine Fibroids
February 19th 2025Women with uterine fibroids and Medicaid coverage are significantly more likely to be treated with uterine artery embolization than those with commercial insurance, according to newly published research.
Study: AI Boosts Ultrasound AUC for Predicting Thyroid Malignancy Risk by 34 Percent Over TI-RADS
February 17th 2025In a study involving assessment of over 1,000 thyroid nodules, researchers found the machine learning model led to substantial increases in sensitivity and specificity for estimating the risk of thyroid malignancy over traditional TI-RADS and guidelines from the American Thyroid Association.