In a recent video interview, David Ouyang, M.D., shared insights from two recent studies he co-authored on the use of artificial intelligence (AI) to improve initial assessment of left ventricular ejection fraction (LVEF) on echocardiography and ascertain cardiac risks associated with changes in the left ventricle sphericity index seen on magnetic resonance imaging (MRI).
When evaluating an artificial intelligence (AI) model for initial assessment of left ventricular ejection fraction (LVEF) on echocardiograms, David Ouyang, M.D., said he was genuinely surprised that cardiologists had greater confidence in initial AI assessments than those provided by cardiac sonographers with an average of 14.1 years of experience.
In the randomized trial, recently published in Nature, cardiologists revised 27.2 percent of initial LVEF assessments by sonographers in comparison to 16.8 percent of AI assessments.
“We initially thought of the tool as kind of a streamlining tool where it speeds things up. We actually designed the trial as a non-inferior trial. We weren’t expecting AI to be better than sonographers. Hopefully, it would be equivalent,” noted Dr. Ouyang, who is affiliated with the Department of Cardiology at the Smidt Heart Institute and the Division of Artificial Intelligence in Medicine at the Cedars-Sinai Medical Center in Los Angeles. “We were pleasantly surprised that AI actually was superior. This really speaks to the high level of precision that automation delivers.”
(Editor’s note: For related content, see “Study Finds AI More Effective Than Sonographer Interpretation of Cardiac Function on Echocardiograms,” “Can AI Improve Triage of CT Pulmonary Angiography Exams for Acute PE?” and “AI Platform for Ultrasound Detection of Cardiac Amyloidosis Gets FDA Breakthrough Device Designation.”)
In a recent interview, Dr. Ouyang also discussed another study that employed deep learning segmentation of cardiac magnetic resonance imaging (MRI) to examine how variations in left ventricle sphericity can impact cardiovascular risks. Based on their findings from a large cohort of nearly 39,000 participants from the UK Biobank, Dr. Ouyang and colleagues found that one standard deviation increase in the left ventricle sphericity index led to a 47 percent increased risk for cardiomyopathy and a 20 percent higher risk of atrial fibrillation.
For more insights from Dr, Ouyang, watch the video below.
GE HealthCare Debuts AI-Powered Cardiac CT Device at ACC Conference
April 1st 2025Featuring enhanced low-dose image quality with motion-free images, the Revolution Vibe CT system reportedly facilitates improved diagnostic clarity for patients with conditions ranging from in-stent restenosis to atrial fibrillation.
New AI-Enabled Portable Ultrasound May Facilitate 50 Percent Reduction in Cardiac Imaging Scan Time
March 28th 2025Artificial intelligence (AI)-powered measurement capabilities provide key features with the Compact Ultrasound 5500CV device, which was unveiled at the American College of Cardiology (ACC) conference.
New Collaboration Offers Promise of Automating Prior Authorizations in Radiology with AI
March 26th 2025In addition to a variety of tools to promote radiology workflow efficiencies, the integration of the Gravity AI tools into the PowerServer RIS platform may reduce time-consuming prior authorizations to minutes for completion.