Using a deep convolutional neural network can improve providers’ ability to predict how patients with hepatocellular carcinoma will respond to Y90-RE treatment, enabling them to offer additional therapies, if necessary.
Providers can do a better job of predicting how patients with hepatocellular cancer (HCC) will respond to Yttrium-90 radioembolization (Y90-RE) treatment when they use a deep convolutional neural network (DNN).
In a poster presented during the Society for Imaging Informatics in Medicine (SIIM) 2021 Virtual Annual Meeting, William Wagstaff, M.D., MS, a third-year radiology and imaging sciences resident at Emory University School of Medicine, revealed that applying the algorithm improved the ability to determine how a patient will respond to Y90-RE therapy.
“The deep learning algorithm had a 16-percent higher area under the receiver operating characteristic curve (ROC-AUC) for predicting immediate, post-radioembolization treatment response in patients with HCC compared to the current best method,” he explained. “This algorithm has the potential to highlight patients that may benefit from earlier follow-up or additional therapy.
For more coverage of SIIM 2021, click here.
Only a small number of patients with HCC qualify for curative surgery or transplant, so Y90-RE is the alternative treatment method. However, a patient’s response to Y90-RE is assessed via imaging after three-to-six months, potentially giving the tumor time to progress or metastasize. To find out whether using a DNN could help providers predict a patient’s Y90-RE response, Wagstaff’s team conducted a retrospective analysis on HCC patients who received Y90-RE treatment between December 2014 and January 2019 at a single institution.
For their study, they divided 77 patients with a total of 103 lesions who had no prior Y90-RE therapy into two groups – 57 with complete response to treatment and 46 with incomplete response. They hand-segmented lesions on pre-treatment arterial phase MRI to pinpoint lesion location, as well as on post-treatment arterial phase MRI to determine slice-wise response, and they used immediate post-Y90-RE SPECT as a proxy for treatment area and dose. Ninety percent of lesions were in a training set, and 10 percent were part of a hold-out test set.
Based on their analysis, the five-fold cross-validation results for the ensemble model were sensitivity of 0.73 +/- 0.29, specificity of 0.70 +/- 0.14, accuracy of 0.75 +/- 0.09, and ROC-AUC of 0.79 +/- 0.12. By comparison, the partition model had a sensitivity of 0.36 +/- 0.34, specificity of 0.80 +/- 0.40, accuracy of 0.63 +/- 0.04, and ROC-AUC of 0.62 +/- 0.09.
In addition, test set results for the ensemble model were sensitivity 0.32, specificity 0.85, accuracy 0.65, and ROC-AUC 0.66, and the results for the partition model were sensitivity 0.03, specificity 0.99, accuracy 0.62, and ROC-AUC 0.57.
Can MRI-Based AI Enhance Risk Stratification in Prostate Cancer?
January 13th 2025Employing baseline MRI and clinical data, an emerging deep learning model was 32 percent more likely to predict the progression of low-risk prostate cancer (PCa) to clinically significant prostate cancer (csPCa), according to new research.
Can MRI Have an Impact with Fertility-Sparing Treatments for Endometrial and Cervical Cancers?
January 9th 2025In a literature review that includes insights from recently issued guidelines from multiple European medical societies, researchers discuss the role of magnetic resonance imaging (MRI) in facilitating appropriate patient selection for fertility-sparing treatments to address early-stage endometrial and cervical cancer.