The use of sensitivity encoding and a gradient echo sequence in dynamic susceptibility contrast (DSC) perfusion imaging at 3T leads to fewer artifacts and better diagnostic quality, according to award-winning research from Denmark.
The use of sensitivity encoding and a gradient echo sequence in dynamic susceptibility contrast (DSC) perfusion imaging at 3T leads to fewer artifacts and better diagnostic quality, according to award-winning research from Denmark.
DSC perfusion examinations at 3T are associated with pronounced artifacts close to tissue/bone and tissue/air interfaces, which mean that parts of the brain cannot be evaluated properly. Clinicians and researchers are reluctant to use this technique in conditions where these areas play an important role, such as Alzheimer's disease, stroke, epilepsy, and brain tumor.
To optimize DSC imaging at 3T, Anne Dorte Blankholm, a radiographer at the MR Centre in Aarhus University Hospital, Skejby, performed examinations on 12 healthy volunteers using a GE Signa HD machine. She presented details about her study in a special exhibition at the ISMRM-ESMRMB meeting organized by the Society of MR Technologists.
Six of the volunteers had a standard gradient echo (GRE) echo-planar imaging (EPI) perfusion sequence and a GRE EPI perfusion sequence during which the parallel imaging technique sensitivity encoding (SENSE/ASSET) was used. The other six had a GRE EPI perfusion examination and a spin echo (SE) EPI sequence.
An injection of Gadovist (gadobutrol, 604.72 mg/ml, 1 mmol/ml, Schering) was given in an antecubital vein. The first group of volunteers had an injection of 0.1 mmol/kg of body weight for each of the GRE sequences. The second group had 0.1 mmol/kg of body weight for the GRE sequence and 0.2 mmol/kg of body weight for the SE sequence.
The size of susceptibility artifacts was evaluated by measuring the area of visible brain for each sequence. On a GE Advanced Windows workstation, readers indicated by hand the area of visible brain, not including the susceptibility artifacts, on each slice in the series. The two-tailed t-test for matched pairs was used for statistical analysis. To assess the impact of the sequences on perfusion data, the signal-to-noise ratio was calculated in a region of interest containing both grey and white matter.
The diagnostic quality was evaluated by an experienced neuroradiologist, who rated the perfusion maps and the perfusion modulus images.
"The results showed that SENSE technology reduces susceptibility artifacts in DSC imaging at 3T," Blankholm noted. "Use of SENSE on the GRE perfusion sequence minimized susceptibility artifacts. The SNR and diagnostic quality increased when SENSE was used."
The results comparing the GRE and SE sequences showed that the SE displayed fewer susceptibility artifacts. There was no significant difference in SNR at baseline, and significant differences were found for SNR peak contrast where the GRE sequence displayed the best signal, according to Blankholm.
Can Generative AI Facilitate Simulated Contrast Enhancement for Prostate MRI?
January 14th 2025Deep learning synthesis of contrast-enhanced MRI from non-contrast prostate MRI sequences provided an average multiscale structural similarity index of 70 percent with actual contrast-enhanced prostate MRI in external validation testing from newly published research.
Can MRI Have an Impact with Fertility-Sparing Treatments for Endometrial and Cervical Cancers?
January 9th 2025In a literature review that includes insights from recently issued guidelines from multiple European medical societies, researchers discuss the role of magnetic resonance imaging (MRI) in facilitating appropriate patient selection for fertility-sparing treatments to address early-stage endometrial and cervical cancer.
Surveillance Breast MRI Associated with Lower Risks of Advanced Second Breast Cancers
January 8th 2025After propensity score matching in a study of over 3,000 women with a personal history of breast cancer, researchers found that surveillance breast MRI facilitated a 59 percent lower risk in advanced presentations of second breast cancers.
New Survey Explores Radiologist and Neurologist Comfort Level with AI Triage for Brain MRI
January 7th 2025Survey results revealed that 71 percent of clinicians preferred adjunctive AI in facilitating triage of brain MRI scans and 58 percent were comfortable utilizing AI triage without input from radiologists.