Hybrid technologies churn large data volumesAdvanced computer-assisted diagnosis systems are beginning to evolve from the integration of PACS and data mining techniques.One technology, called i2i Vision, allows clinical researchers
Hybrid technologies churn large data volumes
Advanced computer-assisted diagnosis systems are beginning to evolve from the integration of PACS and data mining techniques.
One technology, called i2i Vision, allows clinical researchers to search through large archives of digitized mammograms to learn more about patients at high risk for developing breast cancer. The technology, being developed at Georgia Tech Research Institute, enables computers to sift rapidly through large databases, according to Christopher Barnes, Ph.D., a GTRI research engineer.
"Data mining techniques capable of exploring this raw data can discover pixel patterns and correlate health factors useful to medical researchers seeking cures and clues to breast cancer," he said.
The i2i Vision system scans the pixels of digital mammograms in the database to correlate the content of the images, a process designed to discover common and indicative pixel patterns among benign and malignant tumors recorded in the image archive. Further data mining of patient records in the archive may discover other clues useful for understanding breast cancer, Barnes said.
The process doubles as a clinical tool for new breast cancer screening. In early mammography screening trials, i2i Vision showed promising results for detecting microcalcifications.
"The approach achieved nearly 100% detection with what appears to be acceptable levels of false alarms," Barnes said. "That's where you want to be with a mammogram."
A different data mining method using decision tree induction is being applied to interpret lung cancer images. This method of computer-assisted radiology, however, will work only if PACS databases are carefully designed to supply sufficient data for the development of decision support systems. This aspect is rarely considered when PACS is being implemented, according to Petra Perner, Ph.D., director of the Institute of Computer Vision and Applied Computer Sciences in Leipzig, Germany.
"This system will not give the expected result if the PACS has not been set up in the right way," she said. "Images and expert descriptions have to be stored in a standard format."
The use of image processing methods may be an important adjunct to facilitate spiral CT lung cancer screening, said Larry Clark, Ph.D., branch chief of the National Cancer Institute's Biomedical Imaging Program. Image processing algorithms have the potential to assist in lesion detection on spiral CT studies and to assess the stability or change in size of lesions on serial CT studies.
"Investigators developing image processing algorithms, however, need standardized databases," Clark said. "The generation of standardized databases requires the development of consensus on many issues related to database design, accessibility, metrics, and statistical methods for evaluating image processing algorithms."
The NCI plans to establish a group of institutions, called the Lung Image Database Consortium, to develop a consensus and the necessary database.
Study Reaffirms Low Risk for csPCa with Biopsy Omission After Negative Prostate MRI
December 19th 2024In a new study involving nearly 600 biopsy-naïve men, researchers found that only 4 percent of those with negative prostate MRI had clinically significant prostate cancer after three years of active monitoring.
Study Examines Impact of Deep Learning on Fast MRI Protocols for Knee Pain
December 17th 2024Ten-minute and five-minute knee MRI exams with compressed sequences facilitated by deep learning offered nearly equivalent sensitivity and specificity as an 18-minute conventional MRI knee exam, according to research presented recently at the RSNA conference.
Can Radiomics Bolster Low-Dose CT Prognostic Assessment for High-Risk Lung Adenocarcinoma?
December 16th 2024A CT-based radiomic model offered over 10 percent higher specificity and positive predictive value for high-risk lung adenocarcinoma in comparison to a radiographic model, according to external validation testing in a recent study.