Convolutional neural network-enabled segmentation of brain MRI offered a 25.7 percent higher specificity than a radiomic model for differentiating radionecrosis and metastatic progression in patients treated with stereotactic radiosurgery for brain metastases.
While overlapping features on magnetic resonance imaging (MRI) may make it challenging to differentiate between radionecrosis and metastatic progression in patients treated with stereotactic radiosurgery (SRS), artificial intelligence (AI) may have an impact in resolving this diagnostic challenge.
In a recent study presented at the Radiological Society of North America (RSNA) conference, researchers reviewed preoperative MRI data and histological findings for 96 patients (mean age of 56.4) with brain metastases who had stereotactic radiosurgery and subsequent neurosurgery for suspected recurrence or symptomatic disease recurrence. There was a total of 104 brain lesions in the cohort with 29 cases revealing sole radionecrosis, according to the study.
The researchers found that the combined assessment of 3D T1 post-contrast MRI (T1c) and 3D T2 fluid-attenuated inversion recovery (FLAIR) imaging assessment via a radiomics model yielded an area under the receiver operating characteristic curve (AUROC) of 81 percent, sensitivity of 86.7 percent, accuracy of 79 percent and specificity of 60 percent.
In contrast, the study authors noted that combined assessment of T1ce and FLAIR imaging via convolutional neural network-enabled brain segmentation yielded similar sensitivity (87.8 percent) but an 8 percent higher AUROC (89 percent), 7.9 percent higher accuracy (86.9 percent) and 25.7 percent higher specificity (85.7 percent) for differentiating between radionecrosis and metastatic progression.
“Integrating artificial intelligence models with conventional MRI offers a promising non-invasive approach, potentially revolutionizing diagnostic methodologies in this challenging clinical context,” wrote lead study author Gaia Ressa, M.D., who is affiliated with the Department of Biomedical Sciences at Humanitas University in Milan, Italy, and colleagues.
(Editor’s note: For additional coverage from the RSNA conference, click here.)
While noting that post-surgical histological determination is currently the gold standard for differentiating between radionecrosis and metastatic progression, the researchers maintained that their study findings may have a significant impact upon the monitoring of patients who have undergone stereotactic radiosurgery for brain metastases.
“(Artificial intelligence models) have the potential to enhance patient management strategies and reduce unnecessary neurosurgical interventions,” emphasized Ressa and colleagues.
Reference
1. Ressa G, Levi R, Savini G, et al. Artificial intelligence accurately differentiates radionecrosis from true progression in brain metastasis treated with stereotactic radiosurgery: analysis of 104 histologically assessed lesions. Poster presented at the Radiological Society of North America (RSNA) 2024 110th Scientific Assembly and Annual Meeting Dec. 1-5, 2024. Available at: https://www.rsna.org/annual-meeting .
Study Examines Impact of Deep Learning on Fast MRI Protocols for Knee Pain
December 17th 2024Ten-minute and five-minute knee MRI exams with compressed sequences facilitated by deep learning offered nearly equivalent sensitivity and specificity as an 18-minute conventional MRI knee exam, according to research presented recently at the RSNA conference.
Can AI Facilitate Single-Phase CT Acquisition for COPD Diagnosis and Staging?
December 12th 2024The authors of a new study found that deep learning assessment of single-phase CT scans provides comparable within-one stage accuracies to multiphase CT for detecting and staging chronic obstructive pulmonary disease (COPD).
Mammography News: FDA Grants Expanded 510(k) Clearance for AI-Powered SmartMammo Dx DBT Software
November 29th 2024Originally cleared by the FDA in 2021, the SmartMammo Dx software for digital breast tomosynthesis (DBT) can now be utilized with the Senographe Pristina mammography systems from GE HealthCare.