AI model can help alleviate increased sonographer workload, but still has high missed diagnosis rate.
Ultrasound – augmented with a new artificial intelligence (AI)-based computer-aided detection model – can be used to accurately predict breast cancer cases, according to recently published research.
In a study published on June 9 in the Journal of Digital Imaging, a research team, from Sichuan University’s West China Hospital, revealed that even though the AI model has a high missed diagnosis rate, it performs at roughly the same level as trained sonographers. Consequently, it could be used to alleviate provider workload – but not substitute for the provider altogether.
“Although the number of sonographers who perform ultrasonographic examinations, interpret the images, and issue diagnostic reports has increased,” wrote the team, led by Heqing Zhang from the ultrasound department in West China Hospital, “currently, they cannot keep up with the growth in the requirement of ultrasound examinations.”
This ever-growing volume of case studies opens the door for sonographers to make more mistakes. AI models could help solve this problem, the team proposed.
To test the feasibility of using AI models, the investigators used a training set of 5,000 breast ultrasound images – half which were malignant – to develop four convolutional neural networks. They used just over 1,000 scans to test their prediction model.
According to the study results, one AI model – the Inception V3 – outperformed the sonographers with a better area under the curve score, but it was not as sensitive. The providers had a sensitivity rate of 90 percent and missed fewer than 10 percent of diagnoses.
Further work is needed to improve the model’s sensitivity, the team said, because missed breast cancer diagnoses can lead to more negative outcomes than a misdiagnosis.
New Study Examines Short-Term Consistency of Large Language Models in Radiology
November 22nd 2024While GPT-4 demonstrated higher overall accuracy than other large language models in answering ACR Diagnostic in Training Exam multiple-choice questions, researchers noted an eight percent decrease in GPT-4’s accuracy rate from the first month to the third month of the study.
FDA Clears AI-Powered Ultrasound Software for Cardiac Amyloidosis Detection
November 20th 2024The AI-enabled EchoGo® Amyloidosis software for echocardiography has reportedly demonstrated an 84.5 percent sensitivity rate for diagnosing cardiac amyloidosis in heart failure patients 65 years of age and older.
The Reading Room: Artificial Intelligence: What RSNA 2020 Offered, and What 2021 Could Bring
December 5th 2020Nina Kottler, M.D., chief medical officer of AI at Radiology Partners, discusses, during RSNA 2020, what new developments the annual meeting provided about these technologies, sessions to access, and what to expect in the coming year.
Ultrasound Device Garners FDA De Novo Nod for Kidney Stone Clearance
November 14th 2024Emerging research demonstrated that the Stone Clear device, which facilitates post-lithotripsy clearance of kidney stone fragments, led to a 70 percent lower risk of relapse in comparison to observation in a control group.