Deep-learning model outperformed neuroradiologists in predicting risk for disease development.
By adding an artificial intelligence (AI) tool into the mix, researchers were able to use brain MRI scans to predict a patient’s risk level for developing Alzheimer’s disease, according to newly published research.
The risk assessment also included other, non-imaging factors, such as gender, age, and cognitive test scores. Results were published in the journal Brain.
A Boston University team, led by Shangran Qui, Prajakta Joshi, Matthew Miller, and Chonghua Zue, used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to teach a deep-learning algorithm. Based on performance, not only did they determine the model was substantially accurate on three distinct datasets, but they also found that it performed better than neuroradiologists.
“This framework provides a clinically adaptable strategy for using routinely available imaging techniques, such as MRI to generate nuanced neuroimaging signatures for Alzheimer’s disease diagnosis, as well as a generalizable approach for linking deep learning to pathophysiological processes in human disease,” the team wrote.
The team used scans from 414 patients who had been diagnosed with Alzheimer’s, as well as control patients from the ADNI. By analyzing T1-weighted brain MRI images, the fully convolutional neural network can generates color-coded disease probability maps, and a multi-layer perceptron evaluates those maps in order to create a binary Alzheimer’s disease status classification.
Investigators assessed their model on the ADNI dataset. They also did so on three independent patient groups – 382 patients from the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Aging, 102 patients from the Framingham Heart Study, and 582 individuals from the National Alzheimer’s Coordinating Center.
According to their results analysis, the team determined the most effective and accurate model also included evaluations based on a patient’s gender, age, and score on the Mini-Mental State Examination. Compared to the evaluation results of 11 neuroradiologists who read 80 randomly chosen ADNI scans, the investigator’s model performed better, producing an area under the curve of 0.996 compared to the neuroradiologists’ 0.920. Additionally, the model was also highly accurate in identifying high-risk cerebral regions.
Additional testing is needed to validate whether this model can be used to improve clinical care and outcomes, the team wrote, but it has the potential to expand neuroimaging tools and techniques available for disease detection and prevention.
New Study Examines Short-Term Consistency of Large Language Models in Radiology
November 22nd 2024While GPT-4 demonstrated higher overall accuracy than other large language models in answering ACR Diagnostic in Training Exam multiple-choice questions, researchers noted an eight percent decrease in GPT-4’s accuracy rate from the first month to the third month of the study.
FDA Grants Expanded 510(k) Clearance for Xenoview 3T MRI Chest Coil in GE HealthCare MRI Platforms
November 21st 2024Utilized in conjunction with hyperpolarized Xenon-129 for the assessment of lung ventilation, the chest coil can now be employed in the Signa Premier and Discovery MR750 3T MRI systems.
FDA Clears AI-Powered Ultrasound Software for Cardiac Amyloidosis Detection
November 20th 2024The AI-enabled EchoGo® Amyloidosis software for echocardiography has reportedly demonstrated an 84.5 percent sensitivity rate for diagnosing cardiac amyloidosis in heart failure patients 65 years of age and older.
New Study Examines Agreement Between Radiologists and Referring Clinicians on Follow-Up Imaging
November 18th 2024Agreement on follow-up imaging was 41 percent more likely with recommendations by thoracic radiologists and 36 percent less likely on recommendations for follow-up nuclear imaging, according to new research.