• AI
  • Molecular Imaging
  • CT
  • X-Ray
  • Ultrasound
  • MRI
  • Facility Management
  • Mammography

64-slice beats 16-slice CT in virtual colonoscopy

Article

CT colonography performed on a 64-slice scanner produces superior image quality and lesion delineation compared with exams performed on a 16-slice machine. The newer technology’s faster scan time also reduces motion artifacts, according to a scientific exhibit at the European Society of Gastrointestinal and Abdominal Radiology meeting in Italy in May.

CT colonography performed on a 64-slice scanner produces superior image quality and lesion delineation compared with exams performed on a 16-slice machine. The newer technology's faster scan time also reduces motion artifacts, according to a scientific exhibit at the European Society of Gastrointestinal and Abdominal Radiology meeting in Italy in May.

Dr. Anno Graser and colleagues at the Ludwig-Maximilians University Munich screened 30 individuals in the prone and supine positions using a 16-slice scanner at a collimation of 0.75 mm, and 30 patients on a 64-slice system at 0.6-mm collimation.

Two independent expert readers using endoluminal views rated image quality on a five-point confidence scale. They assessed visibility, delineation of lesions, and anatomic details in four colonic segments: sigmoid, descending, transverse, and ascending.

The average exam time was cut by nearly 50% using the 64-slice protocol, from 15.5 seconds to eight seconds. The newer scanner produced no motion artifacts, while five were recorded for the 16-slice machine, a significant difference.

The mean image quality increased from 4.2 to 4.7. At p<0.05 for indication of statistical significance, the 64-slice scanner achieved a superior visualization of lesions and normal colonic mucosa, according to the study.

The Munich researchers also presented at the meeting results of a study that evaluated a prototype computer-aided detection system for CT colonography compared with two expert readers. The CAD system showed high sensitivity in detecting clinically significant polyps greater than 6 mm with acceptable false-positive rates.

Graser and colleagues scanned 105 asymptomatic patients using a 16-slice scanner at 0.75-mm collimation in the supine and prone positions without fecal tagging. Polyps less than or equal to 6 mm were classified as small, those between 7 mm and 9 mm were classified as medium, and those at 10 mm or greater were classified as large.

Readers found 98 polyps (51 small, 32 medium, and 15 large) in 42 patients. CAD detected 69 polyps (70% overall sensitivity) with an average of 3.8 false positives per data set. Average CAD running time was 4.8 minutes. Sensitivity was 51% for small, 94% for medium, and 87% for large polyps.

Investigators concluded that the short calculation time of the CAD system makes its use feasible in screening.

For more information from the Diagnostic Imaging archives:

Prepless CT colonography hides lesions, hinders read

Experienced radiologists speed-read virtual colonoscopy exams

Large CT colonography trial opens with mixed reactions

Technique reduces radiation exposure for CT colonography

Recent Videos
Current and Emerging Insights on AI in Breast Imaging: An Interview with Mark Traill, Part 1
Addressing Cybersecurity Issues in Radiology
Computed Tomography Study Shows Emergence of Silicosis in Engineered Stone Countertop Workers
Can an Emerging AI Software for DBT Help Reduce Disparities in Breast Cancer Screening?
Skeletal Muscle Loss and Dementia: What Emerging MRI Research Reveals
Magnetoencephalopathy Study Suggests Link Between Concussions and Slower Aperiodic Activity in Adolescent Football Players
Radiology Study Finds Increasing Rates of Non-Physician Practitioner Image Interpretation in Office Settings
Assessing a Landmark Change in CMS Reimbursement for Diagnostic Radiopharmaceuticals
Addressing the Early Impact of National Breast Density Notification for Mammography Reports
2 KOLs are featured in this series.
Related Content
© 2024 MJH Life Sciences

All rights reserved.