Speech recognition software produces eight times as many errors as conventional dictation transcription in breast imaging reports, according to new research published in the October American Journal of Roentgenology.
Speech recognition software produces eight times as many errors as conventional dictation transcription in breast imaging reports, according to new research published in the October American Journal of Roentgenology.
Lead author Sarah Basma of Women’s College Hospital in Toronto, Canada, and colleagues considered 615 breast imaging reports from January 2009 to April 2011. The reports, from two hospitals, were evenly split between those created through automated speech recognition and conventional dictation transcription. They found at least one major error in 23 percent of reports done via speech recognition. With dictation transcription, the rate was 4 percent.
Major errors included word omission, word substitution, nonsense phrases, and punctuation errors, among others.
Errors varied by report type. Breast MRI reports were most prone to them, with 35 percent of speech recognition versions having a major error, 13 percent of interventional procedures, and 15 percent of mammography reports (the dictation equivalents had error rates of 7 percent, 4 percent and 0 percent, respectively).
Seniority and native language had little bearing on error rates, the researchers found.
“We thought that there may be a higher error rate for non-native English speakers because the software works with voice recognition, but that didn’t happen,” said co-author Anabel Scaranelo, MD, of the University Health Network in Toronto.
After adjustment for academic rank, native language, and imaging modality, reports generated with speech recognition were eight times as likely as conventional dictation transcription reports to contain major errors.
New Study Examines Short-Term Consistency of Large Language Models in Radiology
November 22nd 2024While GPT-4 demonstrated higher overall accuracy than other large language models in answering ACR Diagnostic in Training Exam multiple-choice questions, researchers noted an eight percent decrease in GPT-4’s accuracy rate from the first month to the third month of the study.
FDA Grants Expanded 510(k) Clearance for Xenoview 3T MRI Chest Coil in GE HealthCare MRI Platforms
November 21st 2024Utilized in conjunction with hyperpolarized Xenon-129 for the assessment of lung ventilation, the chest coil can now be employed in the Signa Premier and Discovery MR750 3T MRI systems.
FDA Clears AI-Powered Ultrasound Software for Cardiac Amyloidosis Detection
November 20th 2024The AI-enabled EchoGo® Amyloidosis software for echocardiography has reportedly demonstrated an 84.5 percent sensitivity rate for diagnosing cardiac amyloidosis in heart failure patients 65 years of age and older.